Discrete Cosine Transformation and Height Functions Based Shape Representation and Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape matching and classification using height functions

We propose a novel shape descriptor for matching and recognizing 2D object silhouettes. The contour of each object is represented by a fixed number of sample points. For each sample point, a height function is defined based on the distances of the other sample points to its tangent line. One compact and robust shape descriptor is obtained by smoothing the height functions. The proposed descript...

متن کامل

Fingerprint Feature Extraction Based Discrete Cosine Transformation

Fingerprint identification and verification are one of the most significant and reliable identification methods. It is impossible that two people have the same fingerprint. Automatics identification of humans based on fingerprint requires the input fingerprint to be match with a large number of fingerprints in the database. Generally, the fingerprint recognition systems are unable to solve the ...

متن کامل

Progressive sparse representation-based classification using local discrete cosine transform evaluation for image recognition

This paper proposes a progressive sparse representation-based classification algorithm using local discrete cosine transform (DCT) evaluation to perform face recognition. Specifically, the sum of the contributions of all training samples of each subject is first taken as the contribution of this subject, then the redundant subject with the smallest contribution to the test sample is iteratively...

متن کامل

A Grayscale Image Steganography Based upon Discrete Cosine Transformation

In this paper, a simple image steganography for secure communication is proposed. Our scheme is based on the discrete cosine transformation (DCT) technique. By using DCT, the most signifi cant information of each DCT secret block can be embedded into the non-signifi cant parts of each DCT cover block. To improve the image quality of the cover image, a quantization factor is used. According to o...

متن کامل

Characterization and classification of fabric defects using discrete cosine transformation and artificial neural network

This paper reports how images of woven fabric defects are gathered using charge coupled device imaging technique and digitized. Discrete cosine transformation (DCT) technique is adopted to characterize the defects and back propagation algorithm based artificial neural network is used to classify the various fabric defects. DCT technique is found to give outstanding results for classification of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2015

ISSN: 1877-0509

DOI: 10.1016/j.procs.2015.08.092